

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-19/0651 of 2019/10/11

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

Stahlfix EASF Injection System

Product family to which the above construction product belongs:

Bonded injection type anchor for use in non-cracked concrete: sizes M8 to M24, rebar Ø8 to Ø25 mm

Manufacturer:

Sogiva Swiss SA Ch. du Lavasson 8 CH-1196 Gland Tel. +41 22 364 57 17 Internet www. sogivaswiss.com

Manufacturing plant:

Sogiva Swiss SA Factory Plant 1

This European Technical Assessment contains:

20 pages including 15 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of: EOTA EAD 330499-01-0601, "Bonded fasteners for use in concrete"

This version replaces:

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The Stahlfix EASF is a bonded anchor (injection type) for concrete consisting of a cartridge with Stahlfix EASF injection mortar and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M24 or a reinforcing bar in the range of diameter Ø8 to Ø25 mm.

The product specification is given in annex A.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex C.

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex C.

Hygiene, health and the environment (BWR3):

No performance assessed

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Sustainable use of natural resources (BWR7)

No performance assessed

Other Basic Requirements are not relevant.

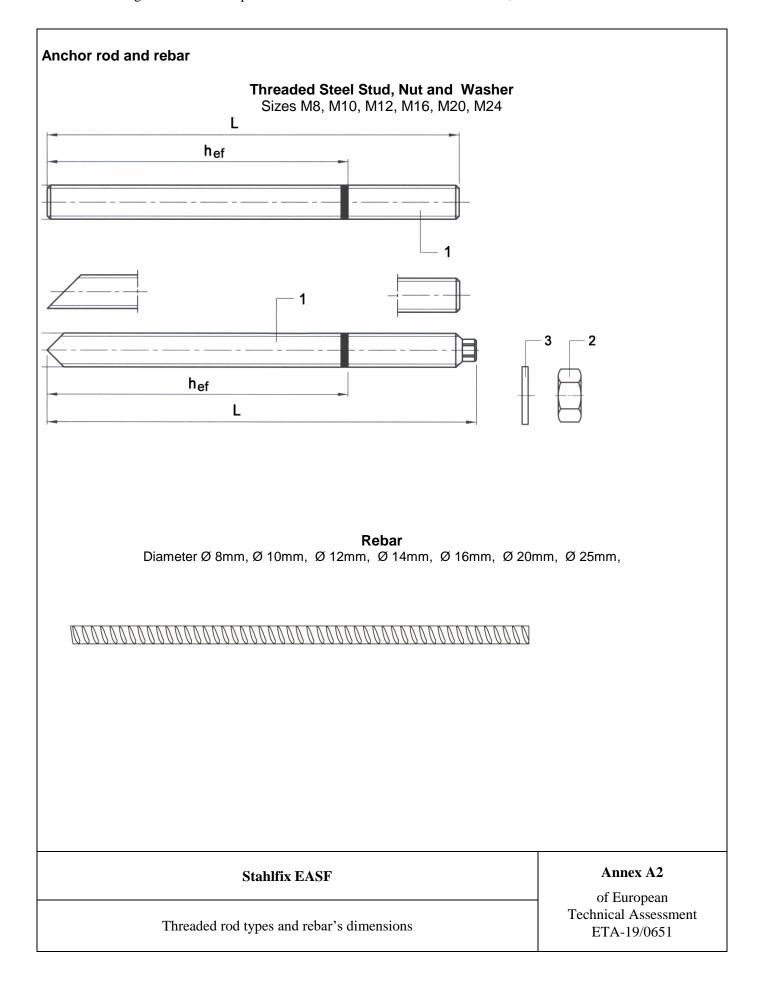
3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with EOTA EAD 330499-01-0601, "Bonded fasteners for use in concrete" option 7.

4 Assessment and verification of constancy of performance (AVCP)

4.1 AVCP system

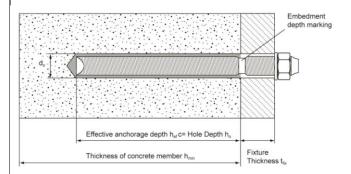
According to the decision 96/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.


5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking.

Issued in Copenhagen on 2019-10-11 by

Thomas Bruun Managing Director, ETA-Danmark


Cartridge: Stahlfix EASF A) Foil Bag Cartridge 165ml, 300ml. Coaxial Cartridge 380ml / 400 ml / 410 ml / 420ml B) C) Side by Side Cartridge 345ml, 825ml Cartridge Print Stahlfix EASF Including - Installation procedure, A) Production Batch code, Expiry Date, Storage conditions, Health & Safety warning, Gel & Cure time according to temperatures. \$III B) C) Marking: Stahlfix EASF Batch code, either expiry date or manufacturing date with shelf life Mixer with hanger **Mixer** Annex A1 **Stahlfix EASF** of European **Technical Assessment** Product and intended use ETA-19/0651

Installed Anchor and Intended Use

Table A1: Installation details for anchor rods

Anchor size	-	-	M8	M10	M12	M16	M20	M24
Diameter of element	d	[mm]	8	10	12	16	20	24
Range of effective embedment depth hef	min	[mm]	60	60	70	80	90	100
and bore hole depth h₀	max	[mm]	96	120	144	192	240	288
Effective embedment depth	h _{ef}	[mm]	80	90	110	125	170	210
Nominal diameter of drill bit	d₀	[mm]	10	12	14	18	24	28
Diameter of clearance hole in the fixture	df	[mm]	9	12	14	18	22	26
Maximum torque moment	T_{max}	[Nm]	10	12	20	40	70	90
Minimum thickness of concrete member	h _{min}	[mm]		+ 30m 100mn			h _{ef} + 2d _o)
Minimum spacing	Smin	[mm]	40	50	60	80	100	120
Minimum edge distance	Cmin	[mm]	40	50	60	80	100	120

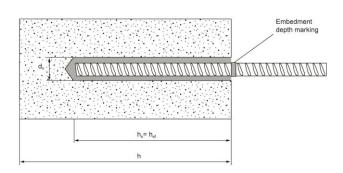


Table A2: Installation details for rebar

Rebar size (mm)			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25
Diameter of element	d	[mm]	8	10	12	14	16	20	25
Range of effective embedment depth hef	min	[mm]	60	60	70	75	80	90	100
and bore hole depth ho	max	[mm]	96	120	144	168	192	240	288
Nominal diameter of drill bit	do	[mm]	12	14	16	18	20	25	30
Minimum thickness of concrete member	h _{min}	[mm]		+ 30m ≥ 100mr			h _{ef} +	- 2d _o	
Minimum spacing	Smin	[mm]	40	50	60	70	80	100	120
Minimum edge distance	C _{min}	[mm]	40	50	60	70	80	100	120

Stahlfix EASF	Annex A3
Installation details for threaded studs and rebar	of European Technical Assessment ETA-19/0651

Table A3: Threaded rod and rebar materials

Designation	Material					
Threaded rods made of zi	Threaded rods made of zinc coated steel					
	Strength class 4.6 to 12.9 EN ISO 898-1					
Threaded rod M8 – M24	Steel galvanized ≥ 5µm EN ISO 4042					
	Hot dipped galvanized ≥ 45µm EN ISO 10684					
Washer ISO 7089	Steel galvanized EN ISO 4042; hot dipped galvanized EN ISO 10684					
NI4	Strength class 8 EN ISO 898-2					
Nut EN ISO 4032	Steel galvanized ≥ 5µm EN ISO 4042					
EN 150 4032	Hot dipped galvanized ≥ 45µm EN ISO 10684					
Threaded rods made of st	ainless steel					
There is her IMO MOA	Strength class 50, 70 or 80 EN ISO 3506;					
Threaded rod M8 – M24	Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 – EN 10088					
Washer ISO 7089	Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 – EN 10088					
Nut	Strength class 70 and 80 EN ISO 3506-1;					
EN ISO 4032	Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 – EN 10088					
Threaded rods made of hi	gh corrosion resistant steel					
	Strength class 70 or 80					
Threaded rod M8 – M24	$R_m = 800 \text{ N/mm}^2$; $R_{p0,2}=640 \text{ N/mm}^2$					
	High corrosion resistant steel 1.4529, 1.4565 EN 10088					
Washer	High comparison resistant stool 4 4500 4 4505 EN 40000					
ISO 7089	High corrosion resistant steel 1.4529, 1.4565 EN 10088					
Nut	Strength class 70 EN ISO 3506-2;					
EN ISO 4032	High corrosion resistant steel 1.4529, 1.4565 EN 10088					
Rebars						
Rebars $\phi 8$ to $\phi 25$	class B and C of characteristic yield strength fyk from 400 MPa to 600 MPa					

Stahlfix EASF	Annex A4
Materials	of European Technical Assessment ETA-19/0651

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 of Regulation 305/2011 (EU) shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

- Static and quasi-static loads: M8 to M24, Rebar Ø8 to Ø25

Base materials:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206-1.
- Non-cracked concrete: sizes from M8 to M24 and rebar φ8mm to φ25mm

Temperature range:

The anchors may be used in the following temperature range:

a) T: -40 °C to +40 °C (max short term temperature + 40 °C and max long term temperature + 24 °C).

Use conditions (Environmental conditions):

Elements made of galvanized steel and stainless steel may be used in structures subject to the following conditions:

- Structures subject to dry internal conditions
 (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).
- Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Installation:

The anchors may be installed in:

- Dry or wet concrete (use category 1)
- Flooded holes with the exception of seawater (use category 2)
- All the diameters may be used overhead
- The anchor is suitable for hammer drilled holes

Proposed design methods:

- Static and quasi-static load: EN 1992-4

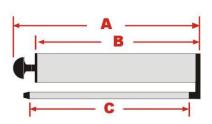
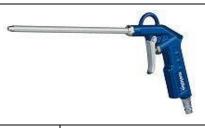

Stahlfix EASF	Annex B1
Intended use - Specification	of European Technical Assessment ETA-19/0651

Table B1: Installation data

Threaded rod and rebar	Size	Nominal drill bit diameter d _o (mm)	Steel Brush d₅ (mm)	Cleaning methods	
		8		Manual cleaning (MAC)	Compressed air cleaning (CAC)
	M8	10	12 mm	Yes h _{ef} ≤ 80 mm	
Studs	M10	12	14 mm	Yes h _{ef} ≤ 100 mm	
	M12	14	16 mm	Yes h _{ef} ≤ 120 mm	Yes
	M16	18	20 mm	Yes h _{ef} ≤ 160 mm	
	M 20	24	26 mm	Yes h _{ef} ≤ 200 mm	
	M 24	28	30 mm	Yes h _{ef} ≤ 240 mm	
	φ 8 mm	12	14 mm	Yes h _{ef} ≤ 80 mm	
	φ 10 mm	14	16 mm	Yes h _{ef} ≤ 100 mm	
Rebar	φ 12 mm	16	18 mm	Yes h _{ef} ≤ 120 mm	
131313111111111111111111111111111111111	φ 14 mm	18	20 mm	Yes h _{ef} ≤ 140 mm	Yes
	φ 16 mm	20	22 mm	Yes h _{ef} ≤ 160 mm	
	φ 20 mm	25	28 mm	Yes h _{ef} ≤ 200 mm	
	φ 25 mm	30	34 mm	Yes h _{ef} ≤ 240 mm	

Manual Cleaning (MAC):

Hand pump recommended for Blowing out bore holes with diameters d₀≤ 24 mm and bore holes depth h₀≤10d



190mm (240x190x300mm) 280mm (330x280x300mm) 400mm (420x370x350mm)

-(A) : 240mm (overall) -(A) : 330mm (overall) -(A) : 420mm (overall) -(B) : 190mm (Body) -(B) : 280mm (Body) -(B) : 370mm (Body) -(C) : 300mm (Tube) -(C) : 350mm (Tube)

Compressed air cleaning (CAC):

Recommended air nozzle with an Orifice opening of minimum 3,5mm in diameter.

Stahlfix EASF	Annex B2
Intended use – data	of European Technical Assessment ETA-19/0651

Table B2: Minimum curing time

Minimum base material temperature C°	Gel time (working time) In dry/wet concrete	Curing time in dry concrete	Curing time in wet concrete
0°C ≤ T _{base material} < 10°C	20 min	90 min	180 min
10°C ≤ T _{base material} < 20°C	9 min	60 min	120 min
20°C ≤ T _{base material} < 30°C	5 min	30 min	60 min
30°C ≤ T _{base material} ≤ 40°C	3 min	20 min	40 min

The temperature of the bond material must be ≥ 20°C

Resin injection pump details		
Image	Size Cartridge / Code	Туре
	165 / 300ml 165 / 300 ml 10:1	Manual
	345 / 380 / 400 / 410 / 420ml 420 ml 10:1 345 ml 10:1	Manual
	165 / 300 / 345 / 380 / 400 / 410 / 420ml 165 / 300 ml 345ml 380 / 400 / 410 / 420 ml 7.4v Tool	Battery
	380 / 400 / 410 / 420 / 825ml 380 / 400 / 410 / 420 ml 825ml	Pneumatic

Stahlfix EASF	Annex B3
Intended use – data	of European Technical Assessment ETA-19/0651

Table B3 - parameters: drilling, hole cleaning and installation						
Bore hole drilling						
	Drill hole in the substrate to the required embedment depth using the appropriately sized carbide drill bit.					
Bore hole cleaning Just before	e setting an anchor, the bore hole must be free of d	ust and debris.				
a) Manual air cleaning (MAC) f	or all bore hole diameters d₀ ≤ 24mm and bore hole	depth h₀≤ 10d				
X 4	The manual pump shall be used for blowing out be 24mm and embedment depths up to hef ≤ 10d. Blow out at least 4 times from the back of the bor	·				
	needed.					
X 4	Brush 4 times with the specified brush size (see brush to the back of the hole (if needed with an e and removing it.					
X 4	Blow out again with manual pump at least 4 times.					
b) Compressed air cleaning (C	EAC) for all bore hole diameters do and all bore hole	depths				
6 Bar X 2	Blow 2 times from the back of the hole (if needed the whole length with oil-free compressed air (mir	with a nozzle extension) over				
X 2	Brush 2 times with the specified brush size (see Table B1) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it.					
X 2 Blow out again with compressed air at least 2 times.						
Stahlfix EASF Annex B3						
	Procedure (1)	of European Technical Assessment ETA-19/0651				

Table B4 - parameters: drilling	ng, hole cleaning and installation
	Remove the threaded cap from the cartridge. Cut open the foil bag if necessary.
	Tightly attach the mixing nozzle. Do not modify the mixer in any way. Made sure the mixing element is inside the mixer. Use only the supplied mixer.
	Insert the cartridge into the dispenser gun.
×	Discard the initial trigger pulls of adhesive. Depending on the size of the cartridge, an initial amount of adhesive mix must be discarded. Discard quantities are 10 cm for all cartridges
	Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull. Fill holes approximately 2/3 full, to ensure that the annular gap between the anchor and the concrete is completely filled with adhesive along the embedment depth.
h _{of}	Before use, verify that the threaded rod is dry and free of contaminants. Install the threaded rod to the required embedment depth during the open gel time t_{gel} has elapsed. The working time t_{gel} is given in Table B2.
t _{cure} T _{inst}	The anchor can be loaded after the required curing time t_{cure} (see Table B2). The applied torque shall not exceed the values T_{max} given in Table A1.

Stahlfix EASF	Annex B4
Procedure (2)	of European Technical Assessment ETA-19/0651

Table C1:	Design method A,	characteristic	tension load	l values
-----------	------------------	----------------	--------------	----------

Stahlfix EASF with threaded rods			M8	M10	M12	M16	M20	M24	
Steel failure									
Characteristic resistance, class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	
Characteristic resistance, class 5.6 and 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176	
Characteristic resistance, class 8.8	N _{Rk,s}	[kN]	29	46	67	125	196	282	
Characteristic resistance, class 10.9	$N_{Rk,s}$	[kN]	38	60	87	163	255	367	
Characteristic resistance, class 12.9	$N_{Rk,s}$	[kN]	44	70	103	190	299	431	
Characteristic resistance, A2, A4 and HCR, Property class 50	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	
Characteristic resistance, A2, A4 and HCR, Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	
Characteristic resistance, A4 and HCR, Properlass 80	erty N _{Rk,s}	[kN]	29	46	67	126	196	282	
Partial safety factor 4.6 and 5.6	$\gamma_{Ms,N}^{1)}$	[-]				2			
Partial safety factor 4.8, 5.8, 8.8, 10.9 and 12.9	γMs,N ¹⁾	[-]				1,5			
Partial safety factor A2, A4 and HCR class 70	γMs,N ¹⁾	[-]				1,87			
Partial safety factor A2, A4 and HCR class 80	γ _{Ms,N} 1)	[-]				1,60			
Combined Pull-out and Concrete cone failure	2)	-							
Diameter of threaded rod	d	[mm]	8	10	12	16	20	24	
Characteristic bond resistance in non-cracked co	ncrete C20/25	– dry or wet	concrete		I.				
Temperature range a ³⁾ : 40°C/24°C	TRk,ucr	[N/mm²]	7	7	6.5	6.5	6	5.5	
Partial safety factor – dry or wet concrete	γinst	[-]		1,2			1,4	1,4	
Characteristic bond resistance in non-cracked co	ncrete C20/25	– flooded h	oles						
Temperature range a ³⁾ : 40°C/24°C	TRk,ucr	[N/mm²]	7	7	6.5	6	5	4.5	
Partial safety factor – flooded holes	γinst	[-]	1,2	2		1,	,4		
		C30/37			1	,0			
Increasing factor for \(\tau_{K,ucr} \) in non-cracked concrete	Ψc	C40/50			1	,0			
	Ψ"	C50/60			1	,0			
Factor for determination of the concrete cone failure	$\mathbf{k}_{ucr,N}$	[-]	11,0 (based on concrete cylinder strength f _{ck}) 10,1 (based on concrete strength f _{ck,cube})					ck)	
Splitting failure ²⁾									
	h / I	n _{ef} ⁴⁾ ≥ 2,0	1,0 h _e	f	h/h _{ef} † 2,0				
Edge distance c _{cr,sp} [mm] for	2,0 > h /	h _{ef} ⁴⁾ > 1,3	3 h _{ef} - 1	h	1,3				
	h / h _{ef} ⁴⁾ ≤ 1,3		1.7 h _{ef}			1,0·h _e	f 1,7 ·	C _{cr,s}	
Spacing	S _{cr,sp}	[mm]			•	2 C _{cr,sp}	1,,,	' 'ef	
1) In absence of national regulations	- 0.,0p	4) h = cond	rete mem	her thick			a amhad	ment	

Stahlfix EASF	Annex C1
	of European
Performance for static and quasi-static loads: Resistances	Technical Assessment
•	ETA-19/0651

¹⁾ In absence of national regulations
2) Calculation of concrete and splitting, see annex B1
3) Explanations, see annex B1

⁴⁾ h = concrete member thickness, h_{ef} = effective embedment depth

Table C2: Displacements under tension load

Stahlfix EASF with threaded rods			М8	M10	M12	M16	M20	M24			
Temperature range a 5): 40°C / 24°C											
Displacement	δ_{N0}	[mm/(N/mm ²)]	0,03	0,04	0,04	0,04	0,09	0,30			
Displacement	δ _{N∞}	$[mm/(N/mm^2)]$	-	-	0,15	-	-	-			

⁵⁾ Explanation see annex B1

Stahlfix EASF	Annex C2 of European
Performance for static, quasi-static: Displacements	Technical Assessment ETA-19/0651

Table C3: Design method A. Characteristic shear load values

Stahlfix EASF with threaded rods			M8	M10	M12	M16	M20	M24
Steel failure without lever arm								
Characteristic resistance, class 4.6 and 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	70
Characteristic resistance, class 5.6 and 5.8	$V_{\text{Rk,s}}$	[kN]	9	15	21	39	61	88
Characteristic resistance, class 8.8	$V_{\text{Rk},s}$	[kN]	15	23	34	63	98	141
Characteristic resistance, class 10.9	$V_{\text{Rk,s}}$	[kN]	19	30	43	81	127	183
Characteristic resistance, class 12.9	$V_{\text{Rk},s}$	[kN]	22	35	51	95	149	215
Characteristic resistance, A2, A4 and HCR, Property class 50	$V_{\text{Rk},s}$	[kN]	9	15	21	39	61	88
Characteristic resistance, A2, A4 and HCR, Property class 70	$V_{\text{Rk,s}}$	[kN]	13	20	30	55	86	124
Characteristic resistance, A4 and HCR, Property class 80	$V_{\text{Rk,s}}$	[kN]	15	23	34	63	98	141
Steel failure with lever arm								
Characteristic resistance, class 4.6 and 4.8	$M^0_{\text{Rk,s}}$	[Nm]	15	30	52	133	260	449
Characteristic resistance, class 5.6 and 5.8	$M^0_{\text{Rk,s}}$	[Nm]	19	37	65	166	324	560
Characteristic resistance, class 8.8	$M^0_{\text{Rk,s}}$	[Nm]	30	60	105	266	519	896
Characteristic resistance, class 10.9	M^0 Rk,s	[Nm]	37	75	131	333	649	1123
Characteristic resistance, class 12.9	M^0 Rk,s	[Nm]	45	90	157	400	779	1347
Characteristic resistance, A2, A4, HCR -50	$M^0_{\text{Rk,s}}$	[Nm]	19	37	65	166	324	560
Characteristic resistance, A2, A4, HCR -70	$M^0_{\text{Rk,s}}$	[Nm]	26	52	95	232	454	784
Characteristic resistance, A4, HCR - 80	$M^0_{Rk,s}$	[Nm]	30	59	105	266	519	896
Partial safety factor steel failure								
Steel, Property class 4.6 or 5.6	$\gamma_{Ms,V}^{1)}$	[-]			1,	67		
Steel, Property class 4.8, 5.8 or 8.8	γ _{Ms,V} 1)	[-]			1,	25		
Steel, Property class 10.9 or 12.9	$\gamma_{Ms,V}^{1)}$	[-]			1,	50		
Stainless steel A2, A4 or HCR Property class 50	$\gamma_{Ms,V}{}^{1)}$	[-]			2,	38		
Stainless steel A2, A4 or HCR Property class 70	$\gamma_{Ms,V}^{1)}$	[-]			1,	56		
Stainless steel A4 or HCR Property class 80	$\gamma_{Ms,V}^{1)}$	[-]			1,	33		
Concrete pryout failure		-						
Factor in equation (27) of EN 1992-4-5, 6.3.3	k ₃	k_3 [-] 1,0 for $h_{ef} < 60$ mm 2,0 for $h_{ef} \ge 60$ mm						
Partial safety factor	γ _{Mc} ¹⁾	[-]			1	,5		
Concrete edge failure								
Partial safety factor	γMc ¹⁾	[-]			1	,5		

¹⁾ In absence of national regulations

Table C4: Displacements under shear load

Stahlfix EASF with threaded rods				M10	M12	M16	M20	M24
Displacement	δ_{V0}	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03
Displacement	$\delta_{V\infty}$	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05

Stahlfix EASF	Annex C3 of European
Performance for static, quasi-static loads: Resistances/Displacements	Technical Assessment ETA-19/0651

Table C5: Design method A, characteristic tension load values										
Stahlfix EASF with rebar			ф8	ф 10	ф 12	ф 16	ф 20	ф 25		
Steel failure										
Characteristic tension resistance	$N_{Rk,s}$	[kN]			A.	s • f _{uk} 1)				
Cross section area	As	[mm ²]	50	79	113	201	314	491		
Partial safety factor	γ _{Ms,N} ²⁾	[-]				1,4				
Combined Pull-out and Concr	ete cone fai	lure ³⁾								
Diameter of rebar	d	[mm]	8	10	12	16	20	25		
Characteristic bond resistance in	n non-cracke	d concrete C	20/25 – dry	or wet concre	te					
Temperature range a ⁴⁾ : 40°C/24°C	τ _{Rk,ucr}	[N/mm²]	5.5	5.5	5.5	5	5	5		
Partial safety factor – dry or wet concrete	γinst ²⁾	[-]		1,2			1,4			
Characteristic bond resistance in	n non-cracke	d concrete C	20/25 – floo	ded holes						
Temperature range a ⁴⁾ : 40°C/24°C	τ _{Rk,ucr}	[N/mm²]	5.5	5.5	5.5	5	4.5	4		
Partial safety factor – flooded holes	γinst	[-]	1,	2		1,4				
		C30/37	1,0			1	,1			
Increasing factor for $\tau_{Rk,ucr}$ in non-cracked concrete	ψc _	C40/50	1,0		1,1	1		1,2		
<u> </u>		C50/60	1,0	1,1		1,2		1,3		
Splitting failure ³⁾					1./1.					
_	h /	h _{ef} ⁵⁾ ≥ 2,0	1,0	h _{ef}	h/h _{ef}					
Edge distance c _{cr,sp} [mm] for	2,0 > h /	h _{ef} ⁵⁾ > 1,3	3 h _{ef}	- 1 h	1,3					
	h	/ h _{ef} ⁵⁾ ≤ 1,3	1.7	h _{ef}		1,0·h _{ef}	1,7 ·h _{ef}	C _{cr,sp}		
Spacing	S _{cr,sp}	[mm]			2	C _{cr,sp}				

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing

Table C6: Displacements under tension load

Stahlfix EASF with rebar			ф8	ф 10	ф 12	ф 16	ф 20	ф 25			
Temperature range a 4): 40°C / 24°C											
Displacement	δ_{N0}	[mm/(N/mm ²)]	0,03	0,03	0,04	0,07	0,07	0,10			
Displacement	$\delta_{N\infty}$	[mm/(N/mm ²)]	-	-	0,15	-	-	-			

Stahlfix EASF	Annex C4		
Performance for static and quasi-static loads: Resistances/Displacements	of European Technical Assessment ETA-19/0651		

 $^{^{5)}\,}h=\mbox{concrete}$ member thickness, $h_{\mbox{\scriptsize ef}}=\mbox{\scriptsize effective}$ embedment depth

²⁾ in absence of national regulation

³⁾ Calculation of concrete and splitting, see annex B1
4) Explanations, see annex B1

Table C7: Design method A. Characteristic shear load values

Stahlfix EASF with rebar			ф8	ф 10	ф 12	ф 16	ф 20	ф 25
Steel failure without lever arm								
Characteristic shear resistance	$V_{Rk,s}$	[kN]	0,50 • A _s • f _{uk} ¹⁾					
Cross section area	As	[mm ²]	50	79	113	201	314	491
Partial safety factor	$\gamma \text{Ms,N}^{2)}$	[-]	1,5					
Steel failure with lever arm								
Characteristic bending moment	M ⁰ Rk,s	[Nm]	1.2 • W _{el} • f _{uk} ¹⁾					
Elastic section modulus	Wel	[Nm]	50	98	170	402	785	1534
Partial safety factor	γ _{Ms,N} 2)	[-]	1,5					
Concrete pryout failure								
Factor	k ₈	[-]	1,0 for $h_{ef} < 60 mm$ 2,0 for $h_{ef} \ge 60 mm$					
Partial safety factor	үмс	[-]	1,5					
Concrete edge failure								
Partial safety factor	γMc ¹⁾	[-]	1,5					

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ In absence of national regulations

Table C8: Displacements under shear load

Stahlfix EASF w	vith rebar		ф8	ф 10	ф 12	ф 16	ф 20	ф 25
Displacement	δ_{V0}	[mm/kN]	0,05	0,05	0,05	0,04	0,04	0,03
Displacement	δ_{V^∞}	[mm/kN]	0,08	0,08	0,07	0,06	0,05	0,05

Stahlfix EASF	Annex C5
	of European
	Technical Assessment
Performance for static and quasi-static loads: Resistances/Displacements	ETA-19/0651

Table C9: Resistance to fire

ESSENTIAL CHARACTERISTICS	PERFORMANCE
Resistance to fire	NPA

Table C10: Reaction to fire

ESSENTIAL CHARACTERISTICS	PERFORMANCE
Reaction to fire	In the final application, the thickness of the mortar layer is about 1 to 2 mm and most of the mortar is material classified class A1 according to EC Decision 96/603/EC. Therefore, it may be assumed that the bonding material (synthetic mortar or a mixture of synthetic mortar and cementitious mortar) in connection with the metal anchor in the end use application do not contribute to fire growth or to the fully developed fire and they have no influence to the smoke hazard.

Stahlfix EASF	Annex C6 of European
Performance for exposure to fire	Technical Assessment ETA-19/0651